Ученые из России, Финляндии и США в ходе анализа наблюдений за активными ядрами галактик смогли поставить ограничения на теоретическую модель частиц, составляющих темную материю. Это подталкивает научные группы по всему миру к дальнейшему изучению загадки — из чего же состоит темная материя. Работа опубликована в Journal of Cosmology and Astroparticle Physics.
Вопрос о том, какие частицы составляют темную материю, сейчас в физике элементарных частиц один из ключевых. Были предположения, что составляющие ее частицы будут обнаружены на Большом адронном коллайдере (БАК). Однако этого не произошло — целый ряд ставших классическими гипотез о природе темной материи не подтвердился. Самые разные наблюдения показывают, что темная материя существует, но получается, что она не может состоять из частиц Стандартной модели. Поэтому физики вынуждены рассматривать более сложные и более многообразные варианты. Речь идет про расширение Стандартной модели элементарных частиц. Например, обсуждаются гипотетические частицы с массами от 10-26 до 10+14 масс электрона, то есть на 40 порядков отличающимися друг от друга.
Существует теоретическая модель, которая объясняет состав темной материи с помощью сверхлегких частиц. Она успешно решает часть задач, которые вытекают из астрономических наблюдений. Однако такие легкие частицы сложно изучать, потому что они очень слабо взаимодействуют с окружающим веществом и светом. В лабораторных условиях обнаружить их практически невозможно, поэтому ученые ориентируются на астрономические наблюдения
«Мы говорим о частицах темной материи, которые на 28 порядков легче электрона. Для модели, которую мы решили проверить, это принципиально важно. Темную материю мы видим по гравитационным проявлениям. И если набрать наблюдаемую массу темной материи сверхлегкими частицами, их получится очень много. Но когда речь идет о столь легких частицах, сразу возникает вопрос, как защитить их от получения эффективной массы из-за квантовых поправок? Расчеты показывают, что ответ может быть связан со слабым взаимодействием этих частиц с фотонами, электромагнитным излучением. Из чего открывается возможность изучать их гораздо проще, потому что астрономия позволяет наблюдать электромагнитное излучение», — рассказывает Сергей Троицкий, один из авторов работы, главный научный сотрудник Института ядерных исследований РАН.
Когда частиц много, можно говорить о них не как о частицах, а как о поле, которое заполняет всю Вселенную с определенной плотностью. В доменах размером порядка 100 парсек поле когерентно осциллирует. Период осцилляции определяется массой частиц, и если исходить из рассмотренной авторами модели, он должен составлять порядка одного земного года. При прохождении поляризованного излучения сквозь такое поле плоскость поляризации световой волны начнет вращаться с тем же периодом. Подобные изменения свойств излучения можно отследить благодаря астрономическим наблюдениям. И периодичность порядка года очень удобна, потому что за многими объектами наблюдение ведется на протяжении нескольких лет, значит, изменения в поляризации их излучения можно будет легко обнаружить.
Авторы работы решили использовались данные наземных радиотелескопов, так как они возвращаются к одним и тем же астрономическим объектам много раз на протяжении цикла наблюдений. Такие телескопы видят далекие ядра активных галактик — сгустки плазмы. Из этих сгустков выходит излучение с очень высокой степенью поляризации. Наблюдая один и тот же сгусток, можно увидеть, как изменяется угол поляризации от года к году.
«Сначала нам показалось, что сигнал отдельных астрономических объектов вырисовывает синусоиду. Но проблема заключается в том, что период этого синуса должен определяться массой частиц темной материи, а значит, должен быть одинаковым у всех объектов. Наша выборка была из 30 наблюдаемых объектов. И даже если попадались периодические изменения, которые связаны с внутренней физикой этих излучающих областей, от одного объекта к другому периоды никогда не повторялись, — продолжает Сергей Троицкий. — Это значит, что взаимодействие с излучением наших сверхлегких частиц темной материи можно смело ограничить. Мы не исключаем существование таких частиц, но мы показали отсутствие их взаимодействия с фотонами, тем самым получив ограничение на существующие модели, описывающие состав темной материи».
«Представляете, как здорово?! В течение многих лет изучаешь себе квазары, а тут приходят коллеги-теоретики и оказывается, что результаты наших высокоточных поляризационных измерений можно использовать для понимания природы темной материи!» — восторженно добавляет Юрий Ковалев, соавтор работы, руководитель научных лабораторий в ФИАН и Московского физико-технического института.
В дальнейшем авторы планируют искать проявления возможных частиц темной материи больших масс, которые рассматриваются в других теоретических моделях. Для этого нужны иные методы наблюдений и спектральные диапазоны. По словам Сергея Троицкого, альтернативные модели имеют более жесткие ограничения.
«Сейчас весь мир работает над поиском частиц темной материи. Это одна из основных загадок в физике частиц. На сегодня нет такой модели, которая была бы основной, лучше проработанной или более вероятной с точки зрения совокупности экспериментальных результатов. Надо проверять все. К сожалению, темная материя — „темная“ в том смысле, что практически ни с чем не взаимодействует. В частности, со светом. Как видно, в некоторых сценариях она может немного менять световую волну, которая проходит сквозь нее. Но есть и такой сценарий, в котором ее частицы вообще никак не взаимодействуют с нашим миром. Только гравитационно. Но тогда ее частицы будет очень сложно найти», — заключает Сергей Троицкий.
В работе принимали участие ученые из Института ядерных исследований РАН, Физического института (ФИАН) им. П.Н. Лебедева РАН, Московского физико-технического института (МФТИ), Крымской астрофизической обсерватории, Университета Пердью (США) и университета Аалто (Финляндия).
Работа поддержана грантом Российского научного фонда.