Исследователи из США, России и Китая синтезировали запрещенное классической химией соединение водорода и церия CeH9, которое демонстрирует сверхпроводимость при сравнительно низком давлении в 1 млн атмосфер. Работа опубликована в журнале Nature Communications.
Материалы, способные проводить ток без сопротивления, называются сверхпроводниками и лежат в основе мощных электромагнитов, например тех, что ускоряют частицы на Большом адронном коллайдере. Недостаток известных на сегодня сверхпроводников в том, что они сохраняют свои свойства лишь при очень низких температурах и высоких давлениях. Это ограничивает круг возможных приложений и делает существующие сверхпроводниковые технологии дорогими. Открытие сверхпроводников, работающих при нормальных условиях, позволило бы передавать электроэнергию по ЛЭП без потерь, удешевить медицинские томографы и поезда на магнитной подушке.
Считается, что при чрезвычайно сильном сжатии водород должен стать твердым металлом. Причем ученые считают, что такая форма водорода может демонстрировать сверхпроводимость при комнатной температуре. К сожалению, металлизация чистого водорода требует колоссального давления, около 5 млн атмосфер. Для сравнения: давление в центре Земли составляет 3,6 млн атмосфер.
«Поэтому материаловеды идут по другому пути: синтезируются так называемые запрещенные соединения разных элементов — например, лантана, серы или церия — и водорода, с повышенным содержанием последнего. Скажем, классическая химия предусматривает вещества с формулами CeH2 и CeH3. Мы же „упаковываем“ в супергидрид церия еще больше атомов водорода и получаем соединение CeH9», — поясняет автор исследования Артём Оганов, профессор Сколтеха и Московского физико-технического института.
«Хотя сверхпроводящие свойства супергидрида церия проявляются только при охлаждении до −200 градусов Цельсия, этот материал интересен тем, что стабилен при более низком давлении (1 млн атмосфер), чем полученные ранее супергидриды серы и лантана. С другой стороны, супергидрид урана UH7, который мы с коллегами предсказали и получили в прошлом году, стабилен при еще более низком давлении (0,2 млн атмосфер), зато он требует большего охлаждения (−219°C)», — рассказывает соавтор работы Иван Круглов, научный сотрудник лаборатории компьютерного дизайна материалов МФТИ и Всероссийского НИИ автоматики им. Н. Л. Духова.
Чтобы получить супергидрид церия, ученые поместили в камеру с алмазными наковальнями микроскопический образец металла церия и вещество, выделяющее при нагревании газообразный водород. Для проведения реакции этот образец сжимали между двумя плоскими алмазами, достигая необходимого давления. При этом содержащий водород реагент нагревался лазером. По мере увеличения давления, в камере образовывались гидриды церия со все большим содержанием водорода: CeH2, CeH3 и т. д. Наконец, продуктом реакции становился супергидрид церия CeH9. По словам авторов исследования, все соединения подобного рода нестабильны при снижении давления.
Чтобы прояснить структуру нового вещества, ученые использовали рентгенодифракционный анализ, чувствительный к расположению атомов церия. В кристаллической решетке CeH9 (рисунок 1) каждый из этих атомов окружен своего рода сферической клеткой из 29 атомов водорода. При этом атомы водорода связаны между собой ковалентными связями — как в молекуле газообразного водорода H2, но несколько слабее — а атомы церия занимают предоставленные им полости.