Отечественную технологию производства ионообменной полимерной мембраны топливного элемента разработали ученые МФТИ. Независимое производство этого узла имеет решающее значение для создания российских аккумуляторов нового поколения и водородного генератора.
Водородный генератор энергии — наиболее прогрессивный и экологичный на данный момент вид топливных элементов. Он реализует конверсию водорода и кислорода из воздуха в электроэнергию, тепло и воду. Основным достоинством такого устройства по сравнению с другими источниками энергии является возможность прямого — без токсичных отходов и перезарядки — превращения большей части выделившейся энергии в электрическую. Считается, что КПД таких элементов может достигать более 80 %.
Мембрана — критически важный функциональный узел водородного генератора, она разделяет электроды и при этом непосредственно участвует в создании замкнутой электрической цепи за счет протонной проводимости. В аккумуляторах старого поколения, например автомобильных, эту роль выполняет жидкий электролит. Тенденция к переходу от классических аккумуляторов с жидким электролитом к топливным элементам на основе полимерной ионообменной мембраны наблюдается в промышленности разных стран.
Для эффективного функционирования в сложных условиях электро-химической реакции мембрана должна обладать рядом неординарных свойств. С одной стороны, прочностью и устойчивостью к агрессивным условиям, с другой — определенной структурой, которая обеспечит тонкость и проницаемость для ионов. Все эти характеристики подразумевают специфическое производство мембраны.
Обычно мембрана представляет собой пленку из полимера, сочетающего гидрофобную (водоотталкивающую) основную цепь и боковые цепи, содержащие кислотные группы (гидрофильная часть). При наличии воды в полимере она локализуется вблизи кислотных групп, образуя наноразмерную систему каналов. В этой области, кроме воды, содержатся различные формы ионов, которые свободно перемещаются через мембрану. Таким образом, гидрофильная часть полимера обеспечивает эффективный транспорт ионов, в то время как гидрофобная часть стабилизирует мембрану, обеспечивая ее механическую прочность.
Созданием российских перфторированных полимерных мембран заняты ученые лаборатории МФТИ, созданной специально под решение обозначенных задач.
«Совместно с индустриальным партнером за первый год реализации проекта были разработаны ноу-хау о получении суспензий перфторированных полимеров и мембран на их основе методом полива. Это первые, но важные шаги по созданию полной технологической цепочки получения протонпроводящих мембран», — сообщает Софья Морозова, руководитель лаборатории технологии ионообменных мембран МФТИ.
По словам разработчиков, технология позволит производить экономичные отечественные мембраны для топливных элементов. Быстрый выход на практический этап планируется за счет сочетания фундаментальных научных разработок с оперативным применением технологических решений на базе индустриального партнера проекта.
В ближайших задачах научного коллектива — работы по увеличению прочности мембраны без потери ионной проводимости за счет введения наноразмерных добавок.
3