Ученые МФТИ и ОИВТ РАН показали, что плазма возвратного удара молнии является оптически тонкой. Ее максимальная температура близка к 30 000 K, а приблизительно 90% излучения находится в вакуумной ультрафиолетовой области спектра. Результаты работы опубликованы в журнале «Оптика и спектроскопия» и будут полезны для развития плазменных технологий.
Гроза, гром, молния и теплый летний дождь — грозное и завораживающее зрелище. Его изучение, в частности получение новых данных о молнии, имеет множество прикладных аспектов.
Молния — сложное физическое явление, которое выглядит как яркая световая вспышка, чаще всего зигзагообразная. Молния является результатом прохождения искрового электрического разряда по проводящему каналу, предварительно созданному в атмосфере.
Процесс появления молнии включает в себя несколько этапов. Важнейшие из них: ступенчатый и дротиковый лидер, а также возвратный удар. Ступенчатым лидером называют разряд, который создает проводящий канал для движения электрического тока от облака к земле. У молний средней и высокой интенсивности прохождение тока по проводящему каналу может повторяться. Канал восстанавливается благодаря дротиковому лидеру, а за ним следует возвратный удар. Возвратный удар — это разряд, осуществляющий перенос большей части заряда молнии. Именно этот этап появления молнии исследовали ученые МФТИ и ОИВТ РАН.
Надо отметить, что при возвратном ударе скорость распространения электромагнитной волны в атмосфере близка к скорости света. Также возвратный удар характеризуется максимальным током и, следовательно, наиболее ярким свечением. Основной вклад в его интенсивность вносит фоторекомбинационное излучение.
Фоторекомбинационное излучение наблюдается, когда ион захватывает пролетающий электрон, при этом в излучение переходит кинетическая энергия свободного электрона и энергия образующейся химической связи.
В ходе работы ученые определили параметры плазмы молнии: температуру, давление и удельную мощность излучения — и рассчитали зависимость удельной мощности излучения равновесной плазмы от температуры при атмосферном давлении (Рисунок 1). Следует пояснить, что плазма — это четвертая форма состояния вещества, представляющая собой газ, который кроме нейтральных атомов и молекул, содержит также свободные электроны и ионы, при этом сумма зарядов всех частиц равна нулю.

Рисунок 1. Температурная зависимость для мощности излучения термодинамически равновесной плазмы воздуха при давлении 1 атм. Источник: журнал «Оптика и спектроскопия».
Ученые показали, что плазма возвратного удара молнии оптически тонкая. Ее максимальная температура близка к 30 000 K. В момент прохождения максимального тока излучение ограничивает рост температуры плазмы. Приблизительно 90% излучения находится в вакуумной ультрафиолетовой области спектра.
В ходе эволюции плазма достигает состояния равновесия внутри электронной, атомной и ионной подсистем. Необходимое для этого время, в зависимости от подсистемы, составляет микросекунды или десятки микросекунд. Также состояние каждой подсистемы характеризуется соответствующей температурой, и они могут различаться. На основе этих данных в ходе возвратного удара молнии можно выделить две стадии (Рисунок 2). На первой стадии давление воздуха падает до атмосферного в результате расширения плазмы. На второй стадии, когда давление близко к атмосферному, параметры плазмы проводящего канала почти не изменяются с течением времени.

Рисунок 2. Эволюция температуры и давления плазмы возвратного удара молнии, а также рассчитанная на основе этих параметров удельная мощность излучения. Температурная зависимость для мощности излучения термодинамически равновесной плазмы воздуха при давлении 1 атм. Источник: журнал «Оптика и спектроскопия».
«Одновременная оценка изменений во времени температуры и давления плазмы, которая находится в проводящем канале молнии, и учет мощности излучения позволил нам составить энергетический баланс эволюции плазмы проводящего канала, — сказал Владимир Крайнов, профессор кафедры теоретической физики МФТИ. — Считаю, что следует включить классическую теорию излучения в современные компьютерные модели молнии».
Данные, полученные учеными, позволят развивать плазменные технологии, в частности, разработать усовершенствованные криптоновые и ксеноновые лампы, а также ртутные лампы высокого давления.
Работа выполнена сотрудниками кафедры теоретической физики им. Л.Д. Ландау Московского физико-технического института (МФТИ) и Объединенного института высоких температур РАН (ОИВТ РАН)
Научная статья: Крайнов В.П., Смирнов Б.М. Излучение проводящего канала молнии // Оптика и спектроскопия. 2024. Т. 132, вып. 7. С. 769—772.