Международная группа исследователей, в состав которой входят ученые из лаборатории терагерцовой спектроскопии МФТИ, напрямую экспериментально наблюдала моттовский переход — превращение проводника в изолятор, обусловленное межэлектронным кулоновским отталкиванием. Понимание механизмов перехода и управление им может привести к созданию новых элементов квантовых компьютеров. Статья опубликована в Nature Materials — самом цитируемом журнале, посвященном материаловедению (импакт-фактор около 40).
Борис Горшунов, заведующий лабораторией терагерцовой спектроскопии МФТИ, комментирует: «В данной работе впервые удалось реализовать ситуацию, позволяющую «в чистом виде» исследовать моттовский фазовый переход металл — диэлектрик и сопоставить его детали с теоретическими предсказаниями. Благодаря особенностям молекулярной структуры, в исследованных органических металлах магнитное упорядочение среди электронов не возникает при охлаждении до самых низких температур. Так что определяющим их свойства взаимодействием остается кулоновское отталкивание. Полученные результаты будут полезны в понимании свойств различных электронно-коррелированных систем, включая высокотемпературные сверхпроводники».
Моттовский изолятор, или когда электроны «запираются»
Что такое электрический ток? В школе нас учили, что по проводам, подходящим к вашему ноутбуку или настольной лампе, бегут электроны — элементарные частицы с отрицательным электрическим зарядом, примерно равным −1,6 × 10-19 Кулонов. В реальности процесс токопереноса в проводниках весьма непростой. Электроны, бегущие по проводу, взаимодействуют с атомами кристаллической решетки и друг с другом: все они заряжены отрицательно, а потому должны отталкиваться (закон Кулона). Для большинства материалов кулоновским отталкиванием можно пренебречь, поскольку кулоновская энергия U, которая характеризует интенсивность взаимодействия, много меньше средней кинетической энергии электронов W, называемой еще шириной зоны проводимости. Однако в некоторых материалах наблюдается обратное соотношение, когда кинетической энергии оказывается недостаточно, чтобы преодолеть отталкивание, и частицы «запираются» внутри кристалла, а материал становится изолятором. Впервые это явление экспериментально обнаружили в 1937 году Ян де Бур (Jan Hendrik de Boer) и Эверт Вервей (Evert Verwey), а первое теоретическое объяснение привели Невилл Мотт (Nevill Mott) и Рудольф Пайерлс (Rudolf Peierls). Сейчас изоляторы с подобным образом «запертыми» электронами называют моттовскими.
Теоретические исследования показывают, что при уменьшении энергии U моттовский изолятор постепенно превращается в проводник (так называемый моттовский переход, Mott metal-insulator transition). Есть мнение, что межзарядовые корреляции типа моттовских должны играть существенную роль в формировании электронных свойств купратов с высокотемпературной сверхпроводимостью. К сожалению, увидеть подобный переход на практике очень сложно: как правило, свойства электронов оказываются в существенной степени подверженными магнитным взаимодействиям, в результате чего происходит переход в магнитно-упорядоченную фазу, что мешает выделить эффект моттовской диэлектризации.
Многие специалисты уверены, что на основе эффекта моттовского перехода могут быть созданы электронные элементы и узлы для быстрых компьютеров. Такие элементы могли бы заменить обычные транзисторы и при этом оказаться быстрее и компактнее. Но пока ученые только начинают исследовать это явление экспериментально.
Квантовые спиновые жидкости
Группа физиков под руководством визит-профессора МФТИ Мартина Дресселя (Martin Dressel) для изучения эффекта решила взять вместо обычных металлов спиновые жидкости. Спиновая жидкость — магнитное состояние вещества, обусловленное «жидким» поведением частиц со спинами при низких температурах. На сегодня известно лишь несколько материалов с такими свойствами.
У электронов есть особая квантовая степень свободы — спин. Условно, спин может быть направлен «вверх» или «вниз», иметь значение −1/2 или +1/2. Кроме этих двух состояний есть еще их суперпозиция (наложение), как будто бы спин смотрит в какую-то другую сторону. При достаточно высоких температурах спины могут быть неупорядочены. При понижении температуры межспиновые взаимодействия обычно приводят к появлению упорядоченного состояния. Но есть материалы, спины в которых не упорядочиваются даже при сверхнизких температурах. Вместо этого они образуют коллективные запутанные состояния. Возникновение такого состояния является квантовым явлением, а само состояние называется спиновой жидкостью. Грубо говоря, спиновая жидкость — это система, в которой намагниченные частицы взаимодействуют друг с другом, однако магнитный порядок не возникает. Отсутствие магнитного порядка в спиновых жидкостях и позволяет выделить эффекты, которые связаны со взаимодействием зарядов, а не спинов электронов, а потому в них проще наблюдать фазовый переход между моттовским изолятором и проводником.
Эксперимент показал моттовский переход
Для эксперимента ученые выбрали три материала, в которых электроны находятся в состоянии спиновой жидкости. Это довольно сложные органические соединения, сокращенно обозначаемые как EtMe, AgCN и CuCN. Исследователи использовали методики инфракрасной и терагерцовой спектроскопии. В этих методиках на исследуемые образцы направляется пучок электромагнитного излучения и фиксируется, какая часть этого излучения отразилась от исследуемого материала или прошла сквозь его достаточно тонкий слой. При этом частота электромагнитного излучения менялась, как и температура исследуемого образца, который был помещен в специальное устройство — криостат. В ходе эксперимента физики изучили зависимость поглощения (называемого еще оптической проводимостью) электромагнитного излучения в EtMe, AgCN и CuCN от частоты. Диапазон частот при этом варьировался от 100 до 4 000 обратных сантиметров (обратный сантиметр — величина, обратная длине волны излучения в сантиметрах). Из полученных зависимостей исследователи извлекали значения кинетической энергии электронов W и кулоновской энергии взаимодействия между ними U.
Таким образом, физики впервые в чистом виде экспериментально наблюдали моттовский переход. Кроме того, в CuCN вблизи границы между областями было обнаружено состояние с металлическими квантовыми флуктуациями, которое до сих пор не наблюдалось из-за магнитного порядка.
Проведенные исследования помогут в будущем в разработке электронных компонентов с новыми свойствами.