В последние годы научные исследования в области аэродинамики становятся все более актуальными с учетом развития высокоскоростных летательных аппаратов. Новое численное исследование, проведенное командой российских ученых из МФТИ и Центрального аэрогидродинамического института им. профессора Н. Е. Жуковского (ЦАГИ), стало важным шагом к более глубокому пониманию сложных процессов, которые протекают в пограничном слое в условиях сверхзвукового потока. Результаты были опубликованы в журнале Fluid Dynamics.
Работа сосредоточена на изучении взаимодействия слабых ударных волн, известных как N-волны, с ламинарным пограничным слоем, образующимся на плоской пластине с затупленной передней кромкой при числе Маха 2,5. Это число означает, что полет происходит со скоростью около 3000 километров в час, то есть в 2,5 раза превышающей скорость звука. Результаты численного моделирования были сопоставлены с известными экспериментальными данными.
Аэродинамические характеристики высокоскоростных летательных аппаратов сильно зависят от турбулизации сжимаемых пограничных слоев, что может значительно увеличить вязкое трение и тепловые потоки к обтекаемой поверхности.
«Корректное определение местонахождения ламинарно-турбулентного перехода является ключевым для предсказания теплового режима поверхности и обеспечения безопасности полетов, — отметил Иван Егоров, член-корреспондент РАН, профессор кафедры компьютерного моделирования МФТИ. — Наши результаты показывают, что изменяя форму поверхности, мы можем сильно повлиять на поведение пограничного слоя».
Ключевым аспектом работы стало рассмотрение взаимодействия N-волны и затупленности передней кромки, что открывает новые горизонты для анализа процессов ламинарно-турбулентного перехода. Исследования предыдущих работ показали, что N-волны могут вызывать значительные возмущения, которые, в свою очередь, ведут к возникновению турбулентных клиньев вблизи поверхности крыла. Эти возмущения способны существенно изменить сценарий аэродинамического потока.
В новом исследовании использовалась оригинальная методика моделирования, основанная на полных уравнениях Навье—Стокса. Условия задачи и параметры течения в модели соответствовали экспериментальному исследованию, которое было проведено в малотурбулентной сверхзвуковой аэродинамической трубе Т-325 Института теоретической и прикладной механики СО РАН.
При численном моделировании N- волны исследователи для удобства расчетов заменили тонкую двумерную прямоугольную неровность параболической дугой.
Они провели моделирование двух случаев: острой и затупленной кромки.
Расчеты были произведены на четырех различных сетках различной степени измельчения, чтобы продемонстрировать, что они сходятся друг с другом.
Ученые обнаружили, что за острой кромкой формируется один стационарный след, состоящий из пары вихрей, тогда как затупленная кромка создает два отдельных следа. Каждый из этих следов, как показали результаты, имеет значительно большую амплитуду стационарных возмущений, что указывает на увеличение неустойчивости потока и потенциально более ранний переход к турбулентности.
Эксперименты в аэродинамической трубе показали, что результаты численного моделирования удовлетворительно согласуются с экспериментальными данными. Они также показали, что линии перехода от ламинарного к турбулентному течению искажаются в области воздействия N-волны. Это открытие может иметь важные практические приложения, например, в аэродинамическом проектировании, где понимание перехода к турбулентности критично для повышения эффективности и безопасности летательных аппаратов.
Хотя полученные результаты представляют собой значительный шаг вперед, авторы подчеркивают, что для более глубокого понимания необходимы дальнейшие параметрические исследования. В частности, потребуется адаптировать характеристики генераторов возмущений для анализа пограничного слоя на затупленных пластинах.
Это исследование стало важным вкладом в область аэродинамики и открывает новые пути для дальнейших исследований взаимодействия потоков и структур, что может помочь в решении ряда инженерных задач в различных областях науки и техники.
Результаты проведенной работы помогут инженерам и конструкторам более точно прогнозировать характеристики высокоскоростных летательных аппаратов, создавая основы для совершенствования их дизайна и повышения безопасности полетов.