Российские ученые исследовали молекулы на основе амина для перовскитных солнечных элементов. Исследование открывает новые возможности для создания долговечных и эффективных солнечных батарей. Результаты опубликованы в журнале RSC Advances.
Перовскитные солнечные элементы с архитектурой n-i-p имеют слоистую структуру:
- Прозрачный электрод, выполняющий роль катода;
- Слой, который транспортирует электроны к катоду — электрон-транспортный слой. Чаще всего состоит из оксидов металлов TiO₂, SnO₂ или ZnO;
- Перовскитный слой, в котором происходит поглощение света;
- Слой, который транспортирует дырки к аноду — дырочно-транспортный слой. Чаще всего состоит из органических молекул, например, PTAA — молекула из семейства поли(триарил)аминов;
- Металлический электрод, который выполняет функцию анода.
При поглощении света перовскиты создают электронно-дырочные пары (экситоны). Под действием внешнего электрического поля эти пары разделяются на электроны и дырки. Электроны движутся к электрон-транспортному слою, который эффективно собирает электроны и доставляет к катоду. Дырки движутся к дырочно-транспортному слою, который направляет их к аноду. Электроны на катоде и дырки на аноде формируют электрический ток, который передается во внешнюю цепь. Коэффициент полезного действия перовскитных солнечных элементов достигает 26%. Такой высокий показатель эффективности получается за счет добавления допантов, что ухудшает стабильность работы дырочно-транспортного слоя.
«Часто в качестве дырочно-транспортных материалов используются полимеры, например, PTAA или малые молекулы Spiro-OMeTAD, но для их эффективной работы требуется дополнительное легирование. К сожалению, это негативно отражается на сроке службы солнечных батарей. В данной работе мы попытались найти такие структуры материалов, которые не требуют дополнительного легирования для эффективной работы», — рассказал Илья Мартынов, старший научный сотрудник лаборатории двумерных материалов и наноустройств Центра фотоники и двумерных материалов МФТИ.
Ученые поставили перед собой цель разработать долговечные и эффективные материалы для транспортировки дырок в перовскитных солнечных элементах.
Для этого физики синтезировали молекулы, обеспечивающие стабильную транспортировку. Проблема заключалась в оптимизации молекулярной структуры для улучшения подвижности носителей и уменьшения дефектов на границе слоев.
Физики получили три звездообразные малые молекулы DPAMes-TT, TPA-TT (на основе трифениламина) и PhFF-TT (на основе трифторбензола). Эффективность полученных молекул сравнивалась с параметрами PTAA, широко применяемого в перовскитных солнечных элементах.
«Молекулярный дизайн звездообразных молекул позволил получить ряд преимуществ по сравнению с линейными. Например, увеличенный транспорт заряда за счет улучшенного π–π взаимодействия и увеличенной кристалличности пленки», — объяснил Илья Мартынов.
Ученые исследовали физико-химические свойства созданных молекул, такие как уровни энергии высшей занятой молекулярной орбитали и низшей свободной молекулярной орбитали, термическую стабильность, подвижность дырок. Результаты исследования показали, что молекулы DPAMes-TT и TPA-TT имеют глубоко лежащие уровни ВЗМО, которые хорошо соответствуют зоне проводимости перовскитного материала, узкие запрещенные зоны, они склонны к самоупорядочению в растворах и высокой кристалличности в пленках, что обеспечивает высокую подвижность носителей зарядов. . Все молекулы стабильны при температурах выше 470°C, что превосходит PTAA (300–400°C). Все синтезированные материалы показали подвижность дырок почти на порядок выше, чем у PTAA.

Рисунок 1. Характерные J-V кривые для устройств на основе разработанных молекул ДТС. (вставка: энергетическая диаграмма ВЗМО и НСМО в соответствии с применяемым перовскитом MAPbI_3). Молекулярные структуры разработанных материалов (справа) Источник: предоставлено авторами
«Такая рекордная стабильность обуславливается высокой термической стабильностью молекул, низкой дефектностью и высоким качеством формируемого интерфейса, в том числе за счет пассивации границы перовскитного слоя», — пояснила Марина Теплякова, старший научный сотрудник Сколтеха.
Физики использовали новые молекулы в изготовлении перовскитных солнечных элементов и измерили их фотоэлектрические параметры и стабильность. В результате ученые выделили две молекулы DPAMes-TT и TPA-TT. Они обеспечили высокую эффективность более 19% без добавления допантов и стабильность более 90% начальной эффективности после 1200 ч испытания солнечной ячейки, превосходя традиционную с PTAA, показавшую КПД всего 18,1% и менее 40% от начальной эффективности при тех же условиях эксперимента.
Ученые предполагают, что использование молекулы DPAMes-TT в перовскитных солнечных батареях приблизит их коммерциализацию и позволит создавать эффективные солнечные панели для энергоснабжения зданий. Кроме того, разработанные молекулы перспективны для возможного использования их в органических светодиодах и датчиках освещенности или фотодетекторах.
«Мы планируем продолжать работы по оптимизации молекулярной структуры для достижения еще лучших параметров как в эффективности устройств, так и их эксплуатационной стабильности. Кроме того, коллеги оптимизируют методы синтеза для масштабирования объемов производства органических полупроводниковых материалов», — поделился Александр Аккуратов, заведующий лаборатории фоточувствительных и электроактивных материалов, ФИЦ ПХФиМХ РАН.
______________
В работе участвовали ученые из Центра фотоники и двумерных материалов МФТИ, Сколтеха, Федерального исследовательского центра проблем химической физики и медицинской химии РАН, Исследовательского центра новых технологий XPANCEO (ОАЭ) и Ереванского государственного университета (Армения).
Работа выполнена при финансовой поддержке Российского научного фонда в рамках проекта № 23-73-01279.
1