Международный коллектив ученых из Греции (FORTH, Университет Крита), Китая (Университет Вестлейк, Университет Тунцзи), Великобритании (Университет Сент-Эндрюс) и России (МФТИ, Санкт-Петербургский государственный университет) впервые продемонстрировал создание и управление экзотическими топологическими состояниями света при комнатной температуре, используя уникальные свойства самособирающихся кристаллов перовскита. Заперев свет в микроскопической ловушке вместе с этими кристаллами, исследователи смогли создать “синтетические” магнитные поля для фотонов, что привело к появлению необычных и надежно защищенных световых состояний. Статья об открытии опубликована в журнале Light: Science & Applications.
В мире электроники ученые давно научились управлять потоком электронов с помощью магнитных полей, используя не только их заряд, но и собственное вращение — спин. Физики давно мечтали достичь подобного контроля и над частицами света, фотонами, чтобы создать сверхбыстрые и энергоэффективные оптические компьютеры. Однако главная трудность заключается в том, что фотоны не имеют электрического заряда и почти не взаимодействуют с обычными магнитными полями. Решение этой задачи лежит в плоскости создания «синтетических» магнитных полей — особых условий в материале, которые заставляют фотоны вести себя так, будто на них действует настоящее магнитное поле. В физике твердого тела этот эффект известен как спин-орбитальное взаимодействие, связывающее спин частицы (для фотона его аналогом является поляризация) с ее движением. Это взаимодействие может порождать так называемые топологические состояния — особые, устойчивые к рассеянию конфигурации, защищенные фундаментальными законами физики. Подобно тому, как нельзя развязать узел на веревке, просто ее растягивая, топологическое состояние света не разрушается при столкновении с мелкими дефектами материала. Однако создание таких систем, работающих при комнатной температуре и не требующих сложнейших производственных процессов, оставалось трудноразрешимой задачей.
Именно этот вызов и приняли авторы нового исследования. Их целью было создать простую и эффективную платформу для генерации топологических фотонных состояний. В качестве ключевого компонента они выбрали гибридные двумерные перовскиты — материалы, чья структура напоминает слоеный бутерброд из чередующихся органических и неорганических нанопластин. Эти кристаллы обладают особым свойством — сильной оптической анизотропией, что означает, что свет разных поляризаций движется сквозь них с разной скоростью. Для эксперимента ученые помещали каплю горячего раствора с прекурсорами перовскита между двумя зеркалами, образующими оптический микрорезонатор. По мере остывания раствора внутри резонатора самопроизвольно вырастали тончайшие кристаллы перовскита, свободно ориентируясь в пространстве, что избавило от необходимости в сложной и дорогостоящей нанолитографии.
Когда свет попадает в такой «сэндвич», начинается сложный физический процесс. С одной стороны, сам резонатор расщепляет свет на две поляризации, что уже создает базовое синтетическое поле. С другой — анизотропный кристалл перовскита вносит дополнительное, гораздо более сильное расщепление, зависящее от его ориентации. Сочетание этих двух эффектов порождает сильное спин-орбитальное взаимодействие для фотонов. Это взаимодействие заставляет световые моды с разной поляризацией и разной пространственной структурой «чувствовать» друг друга и гибридизироваться. В результате в энергетическом спектре системы появляются так называемые анти-пересечения — верный признак сильного взаимодействия. Более того, их взаимодействие со светом сильно зависит от ориентации плоскости поляризации. Эта анизотропия, или двулучепреломление, означает, что свет с разной поляризацией «видит» разный показатель преломления, проходя через кристалл.
Алексей Кавокин, директор Международного центра теоретической физики имени А. А. Абрикосова МФТИ, пояснил: «В результате сочетания эффектов оптической анизотропии и спин-орбитального взаимодействия световых мод удалось, в частности, реализовать поляритонные состояния с отрицательной эффективной массой. Такая “антигравитация” квазичастиц в кристаллах может позволить реализовать новую, сверхтвердую, фазу поляритонной свето-материи. Наша работа подготовила почву для новых открытий, которые могут обогатить нас сверхчувствительными оптическими приборами или, например, мантией-невидимкой.».
Кульминацией исследования стало открытие и теоретическое описание необычных топологических особенностей. Ученые показали, что созданное ими эффективное магнитное поле имеет сложную структуру. В этом пространстве существуют особые «диаболические точки», где эффективное поле полностью исчезает, а энергетические уровни фотонов соприкасаются. Эти точки являются топологическими сингулярностями. Вокруг них возникает гигантская кривизна Берри — геометрическая характеристика, описывающая «закрученность» квантового состояния. Она действует как источник или сток топологического заряда, создавая своего рода вихрь в поведении света.
Новизна работы заключается не только в использовании перспективного материала, но и в глубине анализа. В отличие от предыдущих исследований, где использовались пассивные жидкие кристаллы, требующие внешнего управления осями — результат, который напрямую связан с обобщенной теоретической моделью, впервые учитывающей полную трехмерную ориентацию анизотропного кристалла в резонаторе. Присутствие этих точек и связанной с ними ненулевой кривизны Берри — математического объекта, описывающего топологию системы, — доказывает, что ученым удалось в эксперименте создать нетривиальное топологическое состояние света.
Рисунок 1. a) Принцип работы устройства b). Теоретическое предсказание: диаграмма показывает, что должно происходить со светом в резонаторе с анизотропным кристаллом. Каждая световая «нота» расщепляется на две близкие по энергии линии из-за свойств резонатора и анизотропии самого кристалла. c) Главный теоретический результат — асимметричное взаимодействие: здесь смоделировано поведение двух световых мод, которые в обычной ситуации не должны взаимодействовать. d) Экспериментальные данные, полученные с микроскопа при комнатной температуре. Яркие изогнутые линии — это свет, испускаемый системой под разными углами. На графике отчетливо видны те самые «анти-пересечения», которые были предсказаны теорией в (c). Это прямое доказательство того, что ученым удалось создать и наблюдать сильное спин-орбитальное взаимодействие для фотонов. e) Подтверждение теории: Этот график — результат компьютерного моделирования, основанного на новой теоретической формуле (эффективном Гамильтониане) исследователей. Он практически идеально совпадает с экспериментальными данными из (d), что доказывает верность их теоретической модели и правильность понимания физических процессов. f) Определение причины эффекта: более точная симуляция не только воспроизводит наблюдаемую картину, но и позволяет сделать следующий шаг: рассчитать точную трехмерную ориентацию микрокристалла перовскита, которая и привела к появлению именно такого уникального рисунка взаимодействия. Углы (15°, 27°, 5°) — это углы Эйлера, описывающие наклон и поворот кристалла в пространстве. Источник: Light: Science & Applications
Теоретическая модель, подтвержденная экспериментально, показывает поразительный эффект: при движении света в одном направлении энергетические уровни фотонов просто пересекаются, как будто не замечая друг друга. Однако при движении в другом направлении происходит «анти-пересечение»: вместо того чтобы пересечься, уровни изгибаются и «отталкиваются» друг от друга. Это верный признак того, что между ними возникло сильное взаимодействие — тот самый эффект спин-орбитальной связи, создающий для света синтетическое магнитное поле.
Рисунок 2. a) Карта синтетического магнитного поля. Эта карта показывает рассчитанное эффективное магнитное поле, которое «чувствует» свет в зависимости от его импульса (направления движения). Стрелки указывают направление поля, а цвет — его силу. В двух особых точках синтетическое магнитное поле полностью обнуляется. (b, c, d). Эти графики сравнивают энергетические уровни двух световых мод. На пути, который проходит точно через дьявольские точки (с), уровни просто пересекаются, не взаимодействуя друг с другом. На любом другом пути (d) уровни «отталкиваются», образуя зазор (анти-пересечение). ( e, f, g) Визуализация топологии через кривизну Берри. Кривизна Берри — это фундаментальная характеристика, описывающая «закрученность» квантовой системы. Графики (e) и (f) показывают, что именно в особых точках кривизна Берри становится бесконечной, образуя два острых пика (положительный и отрицательный). Карта (g) наглядно выделяет эти две точки с экстремальной кривизной. Наличие таких сингулярностей является неопровержимым математическим доказательством того, что в системе создано нетривиальное топологическое состояние. Источник: Light: Science & Applications
Алексей Кавокин добавил: «Открытие асимметричных диаболических точек — это не просто красивый физический эффект. Оно показывает, что мы можем управлять топологией света гораздо более гибко, чем считалось ранее. Фактически, просто находя разные кристаллы на образце с разной ориентацией, мы получаем разные “правила дорожного движения” для фотонов. Это открывает путь к созданию мантии-невидимки, которая заставит свет обтекать защищенный мантией объект».
Новизна исследования также заключается в объединении в одном материале двух ключевых функций. Перовскиты здесь выступают не только как пассивный анизотропный элемент, создающий синтетические поля, но и как активная среда. Они обладают сильными экситонными резонансами — коллективными возбуждениями электронов, которые могут эффективно взаимодействовать со светом, образуя гибридные квазичастицы, поляритоны. Ученые продемонстрировали, что даже в режиме сильной связи света и экситонов топологические эффекты сохраняются, что открывает путь к созданию топологических поляритонных лазеров.
Практическая значимость этой работы огромна. Топологически защищенные состояния света могут стать основой для фотонных интегральных схем, в которых оптический сигнал будет передаваться без потерь, даже если на его пути встречаются дефекты или резкие изгибы волновода. Создание синтетических магнитных полей позволяет конструировать невзаимные устройства, такие как оптические изоляторы и циркуляторы — по сути, «улицы с односторонним движением» для света, которые критически важны для стабильной работы лазеров и в архитектуре квантовых компьютеров. Наконец, вся эта область исследований является фундаментом для спиноптроники — технологии будущего, использующей поляризацию света для кодирования и обработки информации.
В дальнейшем ученые планируют исследовать возможность активного управления ориентацией кристалла. Это возможно, поскольку активный материал — перовскит — сам является источником экситонов и обеспечивает сильную связь света и материи.
Авторы разработали обобщенную теоретическую модель, которая впервые описывает систему с полностью анизотропным кристаллом, имеющим произвольную трехмерную ориентацию. Это позволило точно предсказать и объяснить ключевой результат — асимметричное расположение диаболических точек. Исследование не только предлагает готовую платформу для реализации экзотических состояний света, но и ставит новые вопросы о сложной и красивой взаимосвязи между светом, веществом и топологией.
Mavrotsoupakis, E.G., Mouchliadis, L., Cao, J. et al. Unveiling asymmetric topological photonic states in anisotropic 2D perovskite microcavities. Light Sci Appl 14, 207 (2025). https://doi.org/10.1038/s41377-025-01852-8