На фото слева направо: Дмитрий Кузьмичёв, Константин Егоров, Андрей Маркеев и Юрий Лебединский, сотрудники Центра коллективного пользования МФТИ, и установка для АСО. Источник: mipt.ru
Ученые из Центра коллективного пользования МФТИ научились управлять концентрацией кислорода в пленках оксида тантала, получаемых методом атомно-слоевого осаждения. Такие покрытия могут стать основой для создания перспективного типа энергонезависимой памяти. Статья опубликована в журнале ACS Applied Materials and Interfaces.
Хотите память, быструю, как оперативная, но энергонезависимую и емкую, как флеш-память?
В современном мире способы хранения и обработки информации играют ключевую роль, поэтому большое количество научных групп и корпораций работают над разработкой новых типов компьютерной памяти. На сегодня актуальной задачей является создание «универсальной памяти», способной объединить быстроту оперативной памяти и энергонезависимость флешки.
Одним из кандидатов является память на основе резистивного переключения — ReRAM. Ее принцип работы заключается в изменении сопротивления ячейки памяти под действием приложенного напряжения. За счет этого высокое и низкое сопротивления ячейки могут быть использованы для хранения информации. Например: «0» и «1».
Функциональной основой ReRAM-ячейки является структура металл-диэлектрик-металл. В качестве диэлектрического слоя хорошо зарекомендовали себя оксиды переходных металлов (HfO₂, Ta₂O₅). В этом случае приложенное к ячейке напряжение приводит к миграции кислорода, что вызывает изменение сопротивления всей структуры. Таким образом, управление концентрацией кислорода в оксиде является важнейшим параметром, который определяет функциональные свойства ячеек памяти.
Однако, несмотря на заметные успехи в разработке ReRAM, позиции флеш-памяти довольно стабильны. Это происходит благодаря тому, что для производства флеш-памяти можно использовать трехмерные массивы ячеек. Это позволяет значительно увеличить плотность ячеек на чипе, в то время как методы создания пленок с дефицитом кислорода, используемые для ReRAM, не подходят для нанесения функциональных слоев на трехмерные структуры.
Хитрости атомно-слоевого осаждения
Чтобы обойти эти трудности, ученые из МФТИ применили метод атомно-слоевого осаждения (АСО, или atomic layer deposition — ALD, — нанесение тонких пленок, обусловленное протеканием химических реакций на поверхности образца). В последние десятилетия он получил широкое распространение: оптические покрытия, биомедицинские активные поверхности, функциональные слои для наноэлектроники. Есть два ключевых преимущества атомно-слоевого осаждения. Во-первых, уникальный контроль над толщиной получаемых пленок: покрытие в несколько нанометров может быть нанесено с ошибкой в доли нанометра. Во-вторых, метод позволяет однородно покрывать трехмерные структуры, что затруднительно для большинства современных подходов создания нанопокрытий.
В процессе атомно-слоевого осаждения обычно используются два химических реагента: прекурсор и реактант, которые поочередно наносятся на подложку. Химическая реакция между ними ведет к образованию желаемого покрытия. Стоит отметить, что, помимо необходимого химического элемента, прекурсоры содержат дополнительные соединения — лиганды (например, на основе углерода, хлора и т. д.). Они способствуют протеканию химических реакций и в идеальном процессе АСО должны быть полностью удалены из наносимого покрытия после взаимодействия со вторым реагентом — реактантом. Поэтому подбор реагирующих веществ является ключевым для атомно-слоевого осаждения. Однако создание оксидов с различной концентрацией кислорода, столь необходимых для ReRAM, является непростой задачей для атомно-слоевого осаждения.
Андрей Маркеев, к. ф.-м. н., ведущий научный сотрудник МФТИ: «Самым трудным в задаче получения оксидов с дефицитом кислорода было найти нестандартные реактанты, позволяющие не только полностью «убрать» лиганды металлического прекурсора, но и контролировать содержание кислорода в получаемой пленке. Эта задача была успешно решена за счет использования танталового прекурсора, уже содержащего кислород, а в качестве реактанта — активного водорода, генерируемого в удаленном плазменном разряде».
Константин Егоров, аспирант МФТИ: «В нашей работе важно было не только создать пленки с разным количеством кислорода, но и подтвердить это экспериментально. Для этого наша команда использовала уникальный экспериментальный кластер, который позволяет проводить рост и исследование осажденных слоев, не нарушая вакуума».
Исследование поддержано грантом Российского научного фонда № 14-19-01645 и программой повышения конкурентоспособности МФТИ «5–100». В работе использовано технологическое и аналитическое оборудование Центра коллективного пользования уникальным научным оборудованием в области нанотехнологий МФТИ.