Коллектив российских ученых синтезировал ферромагнитные пленки переменного состава из палладия и железа с помощью метода молекулярно-лучевой эпитаксии. Им удалось обнаружить возможность управлять с помощью них спектром спиновых волн. Работа опубликована в Journal of Vacuum Science & Technology A.
Молекулярно-лучевая эпитаксия (МЛЭ) — это метод роста кристаллических пленок на подложках, который используется в материаловедении и микроэлектронике для создания тонкопленочных структур. Основная идея метода заключается в том, что на подложку направляются молекулы или атомы, которые, оседая на поверхности, образуют упорядоченный кристаллический слой.
В начале 1970-х годов ученые начали исследовать способы создания высококачественных полупроводниковых пленок для использования в транзисторах и лазерах. Основными задачами было добиться высокой чистоты и контролируемой структуры материала, что позволило бы улучшить характеристики электронных устройств. Так и была придумана молекулярно-лучевая эпитаксия.
Метод быстро развивался благодаря потребности в более тонких и качественных слоях для новых технологий, таких как светодиоды, лазеры и солнечные элементы. С течением времени молекулярно-лучевая эпитаксия стала одной из ключевых технологий в полупроводниковой промышленности. Она позволила создавать такие материалы, как арсенид галлия (GaAs) и нитрид галлия (GaN), которые имеют важное значение для оптоэлектроники.
Основной принцип молекулярно-лучевой эпитаксии состоит в том, что на нагреваемую подложку подается поток атомов или молекул вещества, которое мы хотим вырастить. Эти атомы, когда они сталкиваются с горячей поверхностью подложки, начинают оседать и образовывать кристаллическую решетку. Метод позволяет получать очень тонкие слои и контролировать их свойства с большой точностью, что делает его очень ценным для создания новых материалов и устройств.
В ходе нового исследования российские ученые продемонстрировали возможность использования метода молекулярно-лучевой эпитаксии для получения тонких пленок ферромагнитного сплава Pd-Fe с прецизионно-регулируемым составом по толщине. Они выпарили чистые палладий и железо из тиглей и осаждали их на подложке из монокристаллического оксида магния.
В процессе осаждения контролировалась температура тиглей, чтобы регулировать скорость осаждения атомов железа, достигая с помощью этого нужной скорости осаждения.
Ученым удалось синтезировать 4 пленки с заранее заданным нетривиальным профилем распределения железа по толщине и одну пленку с равномерным распределением железа.
Для того чтобы изготовить пленку с нужным распределением концентрации железа, температуру ячейки с железом изменяли определенным образом в процессе охлаждения. А температура ячейки с палладием и, следовательно, скорость осаждения палладия, поддерживались постоянными.
После осаждения пленка была отожжена в вакууме при температуре 873 K (600℃). Во время отжига пленка рекристаллизовалась по всему объему и окончательно оформилась. Контроль качества пленки показал, что неопределенность толщины образца оказалась меньше 2 нанометров.
Сразу после осаждения, в процессе отжига, свойства пленок изучались методами рентгеновской дифракции, что позволило охарактеризовать ее микроструктуру, проконтролировать толщину и соблюдение требуемого профиля концентрации.
Основной целью синтеза было изучение возможностей управления спектром спиновых волн. Удалось измерить резонансные характеристики для каждого из образцов в микроволновом диапазоне, что означает возможность создавать тонкие ферромагнитные пленки для спинтронных магнонных устройств с требуемыми параметрами.
«В нашей работе был разработан подход, позволяющий управлять профилем концентрации железа в пленке Pd-Fe путем регулирования температуры источника материала во время осаждения, — рассказал Игорь Головчанский, доктор физико-математических наук, ведущий научный сотрудник Центра перспективных методов мезофизики и нанотехнологий МФТИ. — Мы адаптировали технологию молекулярно-лучевой эпитаксии для синтеза градиентных магнитных тонкопленочных материалов на основе ферромагнитного сплава палладия и железа. Полученные ферромагнитные градиентные пленки могут использоваться для создания устройств магноники, позволяющих передавать сигналы посредством спиновых волн. Данная работа демонстрирует потенциал молекулярно-лучевой эпитаксии как универсального инструмента для синтеза сложных функциональных материалов».
Такие магнитные пленки могут найти применение в перспективных устройствах обработки информации, передачи сигналов, а также сенсорных системах. Дальнейшие исследования в этом направлении позволят расширить спектр магнитных материалов с управляемыми свойствами, что станет важным шагом на пути создания инновационной электроники будущего.
В работе принимали участие ученые из Института физики КФУ, Казанского физико-технического института им. Е. К. Завойского Казанского научного центра РАН и Центра перспективных методов мезофизики и нанотехнологий МФТИ.
4