Российские исследователи впервые продемонстрировали возможность применения нейронной сети PointNext для проведения государственного мониторинга земель. В статье, опубликованной в «Вестнике СГУГиТ», представлены наилучшие параметры для обучения модели с тем, чтобы обеспечить максимальную точность. Использование нейросети позволит автоматизировать рутинные процессы при земельном планировании и, таким образом, ускорить процесс согласования документов на право собственности.
Для задач строительства, приватизации требуется регулярный мониторинг территорий. Ведут его, как правило, классическим методом. Сотрудники выезжают на место и проводят визуальный осмотр. Это отнимает много времени, сказывается нехватка персонала. Ученые из МФТИ и Кубанского государственного технологического университета предложили автоматизировать этот процесс.
Авторы работы приводят в пример реализацию закона о «Гаражной амнистии» в Краснодаре. Согласно этому закону, граждане могут легализовать свой гараж и приобрести в собственность земельный участок под ним. Сейчас в работе департамента муниципальной собственности находится 7000 заявлений, люди ждут согласования документов от 6 до 16 месяцев, в то время как регламент отводит на все месяц.
Ускорить процесс поможет съемка территории лазерным локатором (лидаром). Для распознавания объектов исследователи предложили использовать нейронную сеть PointNext, разработанную на основе PointNet++. Это программа с открытым кодом, написанная для работы с облаками точек лазерного отражения. Ее используют для сегментации, классификации и идентификации трехмерных объектов.
«Обычно нейросети используют для распознавания объектов на фото или видео, а PointNext работает с облаком точек лазерного отражения. Поэтому мы решили использовать ее», — пояснил Сергей Самарин, аспирант Физтех-школы радиотехники и компьютерных технологий МФТИ.
Лидар сканирует территорию лазерными импульсами, по времени их возвращения он определяет расстояние до объекта. В результате получается массив точек. Именно его и передают в нейросеть.
Но чтобы она выдала качественный результат, ее нужно обучить. Для этого используют эталонные наборы данных. В данном случае ученые воспользовались системой Terra_Maker, разработанной в Кубанском государственном университете. С ее помощью сгенерировали массив точек лазерного отражения участка размером 1000 на 1000 метров, где находится более 500 объектов недвижимости. Общее количество точек — более 4,7 миллионов. Все они были размечены на пять классов: земля, крыши зданий, низкая растительность, средняя растительность, высокая растительность.
Для оценки качества работы модели используют различные метрики, в первую очередь точность (accuracy), которая показывает долю верных ответов. Хорошая точность стремиться к 100 % (но не равна им). Чтобы получить максимальную точность, нужно правильно подобрать параметры работы нейросети. Именно эту задачу решали авторы исследования. Они перенастроили специально под нее PointNext и приступили к обучению.
Потребовалось 12 экспериментов, в результате которых определили оптимальное количество точек для одного обучаемого образца, размер сетки и количество эпох (когда через алгоритм проходит весь набор данных). В исследовании применяли функцию потерь CrossEntropy loss, оптимизатор Adam optimizer, экспоненциальное убывание скорости обучения (Step Decay).
Результаты работы нейросети представлены в виде трехмерных графиков с точками, покрашенными определенным цветом. Крыша здания, к примеру, сиреневая, высокая растительность — красная.
Наиболее точный результат получили при 2500 точек в одном обучающем образце и сетке 25 метров. В процессе обучения выявили закономерность — чем меньше сторона сетки и меньше точек в облаке, тем выше точность. Если добавить в датасет информацию о цвете, то точность несколько снижается, но не существенно. В целом, чем меньше параметров, тем более эффективно предсказывает модели. Наилучшая точность, полученная в эксперименте — 0,9998. Такой результат, близкий к единице, говорит об идеальном наборе данных, с которыми работала нейросеть. С реальным датасетом, где есть искажения и шумы, точность будет ниже.
Следующим шагом ученые намерены задействовать воздушное лазерное сканирование на реальных объектах с последующей камеральной обработкой данных нейросетью.
«Вместо того, чтобы тратить целый день на обход земельных участков, мы запускаем беспилотник с лидаром, делаем съемку. Чистим данные от шумов и отправляем в нейросеть. Она сегментирует и классифицирует данные так, что мы понимаем, где на территории есть здания, например, гараж», — поделился планами Сергей Самарин.
Эта работа важна не только для реализации закона о «гаражной амнистии», но также для выявления незаконного строительства, контроля за нарушениями при строительстве, например, соблюдении этажности, отступов от границ земельных участков.