Ученые МФТИ и Федерального исследовательского центра проблем химической физики и медицинской химии РАН получили гибридный люминофор в форме коллоидных квантовых точек — кристаллофосфор фосфида индия, допированного марганцем. Результаты работы опубликованы в Journal of Photochemistry and Photobiology A: Chemistry и High Energy Chemistry и могут лечь в основу принципиально новых устройств нанофотоники, не имеющих аналогов в мире.
Люминесценция — это явление спонтанного испускания света в результате возбуждения вещества. Возбуждение может произойти из-за поглощения света, механического либо иного воздействия.
Люминофоры востребованы энергетической промышленностью, медициной, системами контроля качества и рядом других областей. Лампы дневного света в наших домах содержат люминофор. Многие медико-биологические исследования проводят с помощью этих соединений. Явление люминесценции лежит в основе защиты от подделок различных объектов, в частности ценных бумаг и банкнот.
Первое поколение люминофоров — кристаллофосфоры — представляют собой широкозонный полупроводник с введенными люминесцирующими ионами. Полупроводник выступает в роли фотопоглощающей матрицы, а примесные ионы — центрами излучательной рекомбинации. В связи с этим контроль спектральных характеристик определяется в первую очередь подбором ионов-допантов. Второе поколение люминофоров — это молекулярные люминофоры, спектральные свойства которых определяются дизайном молекулы и подбором функциональных групп. Вопрос создания гибридных люминофоров, то есть объединяющих в себе принципы создания люминофоров разных поколений, является малоизученным.
Коллоидные квантовые точки — новый класс люминофоров. Они нашли широкое применение в светоизлучающих диодах, солнечных элементах и фотодетекторах, а также в биомедицинских метках. Квантовые точки представляют собой полупроводниковые нанокристаллы. От их размера зависит структура электронных уровней и, как следствие, спектральные свойства. Данный эффект, именуемый квантово-размерным, создает новый подход к созданию люминофоров с заданными спектральными свойствами и выгодно выделяет их на фоне люминофоров прошлых поколений.
Ученые МФТИ и ФИЦ проблем химической физики и медицинской химии РАН рассмотрели способы создания и исследования спектрально-кинетических характеристик кристаллофосфора InP:Mn в форме коллоидных квантовых точек. В данном случае спектральные свойства определяются квантово-размерным эффектом в матрице InP, наличием примесного иона Mn2+, а также взаимным расположением энергетических уровней матрицы и иона-допанта.
В подобных системах наблюдается три вида излучения: флуоресценция, фосфоресценция и замедленная флуоресценция. В первом случае время жизни составляет около 50 нс, во втором — порядка 1 мс, в третьем — от 100 нс до нескольких мкс. Ученые показали (Рисунок 1), как именно квантово-размерный эффект в таких системах определяет соотношение этих трех видов излучения.

Рисунок 1. Фотолюминесцентные свойства коллоидных квантовых точек InP:Mn. Источник: Д. Певцов.
Следует подчеркнуть, что практический аспект использования коллоидных квантовых точек в фотонике основан не на индивидуальных, а на их коллективных свойствах в составе организованных структур — плотноупакованных слоев или нанокластерах. В таких системах возможен перенос носителей заряда, то есть фотопроводимость, и перенос энергии, иными словами Ферстеровский резонансный перенос возбуждения. Причем фотопроводимость имеет место, когда расстояние между гранями квантовых точек не превышает доли нанометров. Зато на любых расстояниях, вплоть до десятка нанометров, наблюдается Ферстеровский резонансный перенос возбуждения. Следовательно, он влияет на транспортные свойства в практически любых плотноупакованных системах, образованных коллоидными квантовыми точками. Эти особенности переноса энергии являются очень важными.
В работе, опубликованной в High Energy Chemistry, ученые исследовали роль флуоресцентных особенностей коллоидных квантовых точек InP:Mn/ZnS в процессах транспорта электронного возбуждения (Рисунок 2).
«Наличие примеси марганца приводит к появлению нового люминесцентного эффекта — “задержанного” переноса возбуждения, — пояснил Дмитрий Певцов, инженер-технолог лаборатории фотоники квантово-размерных структур МФТИ. — Суть эффекта заключается в возможности наблюдения переноса возбуждения на больших временах порядка миллисекунд, соответствующих продолжительности фосфоресценции, то есть времени жизни возбуждения на примесном ионе двухвалентного марганца, причем перенос происходит по короткоживущим уровням квантовых точек».
Данный эффект присутствует в системах допированных коллоидных квантовых точек, в которых наблюдается замедленная флуоресценция.

Рисунок 2. Спектры люминесценции коллоидных квантовых точек InP:Mn. Источник: Д. Певцов.
Результаты работы ученых, в частности, «задержанный» перенос возбуждения может лечь в основу принципиально новых устройств нанофотоники не имеющих аналогов в мире.
_______________________
Работа поддержана РНФ, проект № 21-73-20245.