«До нас никто не связывал кубит с резонатором на поверхностных акустических волнах в квантовом режиме. Были отдельно изучены резонаторы такого типа, но без кубита, и отдельно кубиты с поверхностно акустическими волнами, но бегущими, не в резонаторе. На объемных резонаторах квантовый режим был показан, но дело далеко не пошло, возможно, из-за сложности производства. Мы же использовали однослойную структуру, которая делается с помощью существующих технологий», — рассказывает Алексей Болгар, научный сотрудник лаборатории искусственных квантовых систем МФТИ, в которой было выполнено исследование.
Ученые изучали взаимодействие сверхпроводящего кубита — трансмона — с поверхностными акустическими волнами в резонаторе. Трансмон ведет себя как искусственный атом, то есть у него есть энергетические уровни, между которыми он может переходить (рисунок №1). Есть стандартный микроволновый подход: если на одном чипе с кубитом расположить микроволновый резонатор, который будет поддерживать и усиливать волну, то кубит может с ним взаимодействовать. Кубит может переходить в возбужденное или основное состояние, поглощая из резонатора или излучая в него фотон с частотой, равной частоте перехода кубита. При этом резонансная частота самого резонатора изменяется в зависимости от состояния кубита. Таким образом, измеряя характеристики резонатора, можно производить чтение информации с кубита. Не так давно появилось новое направление, в котором вместо микроволнового излучения (фотонов) используется механическое воздействие (фононы) в виде акустических волн. Несмотря на то, что квантовоакустический подход развит далеко не так сильно, как микроволновый, у него есть много преимуществ.
Скорость распространения акустических волн в 100 тыс. раз меньше скорости света, следовательно, и длины волн во столько же раз меньше. Размер резонатора должен «подходить» под длину волны. В микроволновой квантовой системе длина волны будет составлять в лучшем случае около 1 сантиметра. Для этого требуется большой резонатор, а чем больше резонатор, тем больше в нем оказывается дефектов, которые всегда присутствуют на поверхности чипа. Эти дефекты приводят к короткому времени жизни состояния кубита, что мешает производить масштабные квантовые вычисления и тормозит создание квантового компьютера. Мировые рекорды составляют порядка 100 микросекунд (0,0 001 секунды). В случае с акустикой длина волны составляет около 1 микрометра, что позволяет компактно размещать на чипе высокодобротные резонаторы размером 300 микрон.
Кроме того, из-за большой длины волны в микроволновый электромагнитный резонатор сложно поместить два кубита, которые бы взаимодействовали с ним на разных частотах. Поэтому в микроволновом случае для каждого кубита приходится делать отдельный резонатор (рисунок №2). В акустическом случае можно сделать несколько кубитов, немного отличающиеся по частоте перехода, и разместить их в одном механическом резонаторе. Таким образом, квантовый чип на звуковых волнах должен быть гораздо компактнее тех, что производят сейчас. К тому же акустодинамика может решить проблему чувствительности квантово-вычислительных систем к электромагнитному шуму.
Авторы статьи использовали резонатор, который работает на поверхностных акустических волнах — это волны, как на поверхности моря, но возникающие на поверхности твердого тела. Собранный чип показан на рисунке №3. На пьезоэлектрическую подложку из кварца напыляется алюминиевая схема из трансмона, резонатора и двух встречно-штыревых преобразователей (ВШП). Один ВШП действует как излучатель, другой — как приемник, между ними лежит пьезоэлектрик — материал, преобразующий электромагнитное воздействие в механическое и наоборот. На пьезоэлектрике возникает поверхностно-акустическая волна, которая бежит и запутывается между зеркалами резонатора. Внутри резонатора находится кубит (трансмон) с двумя энергетическими уровнями, емкость кубита тоже организована в виде ВШП. Целью исследования было показать, что он может взаимодействовать с резонатором, возбуждаясь и релаксируя, как квантовый объект. Измерения проводились в криостате, охлажденном до десятков милликельвинов.
Основная глобальная цель — показать, что явления и эффекты квантовой оптики работают на акустике. Кроме того, это альтернативный путь к созданию квантового компьютера. Хотя на микроволновых интерфейсах собирают уже по 50 кубитов и акустическим пока до этого далеко, у квантовой акустики много преимуществ, которые могут пригодиться в будущем.
Кроме сотрудников лаборатории искусственных квантовых систем МФТИ, в работе принимали участие ученые из МИСиС, МГПУ и Лондонского университета.
Работа выполнена при поддержке Российского научного фонда и Министерства образования и науки РФ на технологическом оборудовании МФТИ.